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Abstract

With the threat posed by quantum computers on the horizon, systems like Ethereum must transition
to cryptographic primitives resistant to quantum attacks. One of the most critical of these primitives
is the non-interactive multi-signature scheme used in Ethereum’s proof-of-stake consensus, currently
implemented with BLS signatures. This primitive enables validators to independently sign blocks, with
their signatures then publicly aggregated into a compact aggregate signature.

In this work, we introduce a family of hash-based signature schemes as post-quantum alternatives
to BLS. We consider the folklore method of aggregating signatures via (hash-based) succinct arguments,
and our work is focused on instantiating the underlying signature scheme. The proposed schemes are
variants of the XMSS signature scheme, analyzed within a novel and unified framework. While being
generic, this framework is designed to minimize security loss, facilitating efficient parameter selection.
A key feature of our work is the avoidance of random oracles in the security proof. Instead, we define
explicit standard model requirements for the underlying hash functions. This eliminates the paradox
of simultaneously treating hash functions as random oracles and as explicit circuits for aggregation.
Furthermore, this provides cryptanalysts with clearly defined targets for evaluating the security of
hash functions. Finally, we provide recommendations for practical instantiations of hash functions and
concrete parameter settings, supported by known and novel heuristic bounds on the standard model
properties.
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Preliminary Benchmarks




Efficiency

Encoding Parameters Gen [s] Sign [us] Ver [us] | Sig [KiB] 7 AC 7oy AC 716 WC 74 WC

= W w=1 179.01 362.59 416.54 4.97 81 97 158 97
| W w =2 168.19 350.04 408.67 2.75 122 59 237 59

'j W w =4 330.52 638.08 769.41 1.66 325 41 615 41
£ W w=2y8 2717.28 4820 5820 1.11 2917 31 5355 31

E TSW w=10=1 172.67 541.45 396.56 4.75 77 93 77 93
NG TSW =1,6=1.1 172.29 898.22 376.62 4.75 69 93 69 93
TSW w=20=1 166.51 530.83 372.93 2.65 117 57 117 57

TSW w=20=1.1 166.22 888.55 351.37 2.65 105 57 105 57

TSW w=4,0=1 312.49 1090.00 650.82 1.58 292 39 292 39

TSW w=4,0=1.1 312.64 1670.00 602.75 1.58 263 39 263 39

TSW w=28d=1 2501.01 9760.00 4900.00 1.06 2550 30 2550 30

TSW w=23840=1.11| 2499.97 14570.00 4320.00 1.06 2295 30 2295 30

S, W w=1 780.89 362.44 418.31 5.03 82 99 158 99
| W w =2 705.42 336.30 400.60 2.81 122 61 237 61

‘j W w=4 1353.18 617 .48 746.28 1.72 326 43 615 43
& W w =8 11122.95 4981.20 6039.40 1.34 2917 35 5355 35
o TSW w=10=1 752.57 520.42 401.32 4.81 77 95 77 95
— TSW w=14=1.1 731.79 844.01 381.23 481 69 95 69 95
TSW w=20=1 667.76 527.17 379.56 2.7 117 59 117 59

TSW w=2/0=1.1 668.14 853.66 354.09 2.7 105 59 105 59

TSW w=4,0=1 1249.52 1057.40 661.61 1.64 292 41 292 41

TSW w=4,0=11 1| 1248.35 1600.00 603.65 1.64 263 41 263 41

TSW w=28 =1 9972.32 9509.50 4870.60 1.27 2550 34 2550 34

TSW w=840=1.11| 992797 14271.00 4358.60 1.27 2295 34 2295 34

* Assuming Poseidon?2 is used, |28-bit classical security
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